Neural Networks and their application in the fields of corporate finance
نویسنده
چکیده
This article deals with the usefulness of neuronal networks in the area of corporate finance. Firstly, we highlight the initial applications of neural networks. One can distinguish two main types: layer networks and self organizing maps. As Altman al. (1994) underlined, the use of layer networks has improved the reclassifying rate in models of bankruptcy forecasting. These first applications improved bankruptcy forecasting by showing a relationship between capital structure and corporate performance. The results highlighted in our second part, show the pertinence of the use of the algorithm of Kohonen applied to qualitative variables (KACM). More particularly, in line with Altman (1968, 1984), one can suggest the coexistence of negative and positive effects of financial structure on performance. This result allows us to question scoring models and to conclude as to a non-linear relationship. In a larger framework, the methodology of Kohonen has allowed a better perception of the factors able to explain the leasing financing (Cottrell et al., 1996). This research, carried out with Belgian accounting data, highlights a relationship between leasing and the corporate financial strength. A following paper of this first study has been made using recent French data. The objective is here to explain the factors of the choice between leasing and banking loans. By using different variables, we highlight the characteristics of firms which most often use leasing. The corporate financing policy could be explained by: the cost of the financing, advantages of leasing or by the minimization of agency costs in leasing, we highlight a relationship between resorting to leasing and credit rationing.
منابع مشابه
ANN-DEA Approach of Corporate Diversification and Efficiency in Bursa Malaysia
There is little consensus on the corporate diversification-efficiency relationship in the diversification literature. According to the corporate diversification, firms have a tendency to get more market share with diversifying in the local segment or in the international market. Theoretically, a contradictory exists between the profitable strategy and the value reducing strategy in the diversif...
متن کاملApplication of Genetic Algorithm in Development of Bankruptcy Predication Theory Case Study: Companies Listed on Tehran Stock Exchange
The bankruptcy prediction models have long been proposedas a key subject in finance. The present study, therefore, makes aneffort to examine the corporate bankruptcy prediction through employmentof the genetic algorithm model. Furthermore, it attempts to evaluatethe strategies to overcome the drawbacks of ordinary methods forbankruptcy prediction through application of genetic algorithms. Thesa...
متن کاملA Proposed Data Mining Methodology and its Application to Industrial Procedures
Data mining is the process of discovering correlations, patterns, trends or relationships by searching through a large amount of data stored in repositories, corporate databases, and data warehouses. Industrial procedures with the help of engineers, managers, and other specialists, comprise a broad field and have many tools and techniques in their problem-solving arsenal. The purpose of this st...
متن کاملGMDH Type Neural Networks and Their Application to the Identification of the Inverse Kinematics Equations of Robotic Manipulators (RESEARCH NOTE)
متن کامل
Forecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008